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Effect of a density dependent partition function on the EOS properties of neutral
nitrogen and the doubly-ionized argon plasma

William P. Gammel and Jeffery A. Leiding
Theoretical Division,T-1

Los Alamos National Laboratory

I. INTRODUCTION

There have been many attempts1,2 to improve upon
the calculation of the thermodynamic properties of plas-
mas. These properties are dependent on the form of
the partition function, and so a study of these proper-
ties without a discussion of the partition function would
be incomplete. Many previous authors have shown rea-
sonable concern over the electronic contribution to the
partition function, since it is well known that the se-
ries expression diverges. To remedy this, various authors
have proposed techniques to truncate the divergent series
in a physically meaningful way. Furthermore, the ioniza-
tion potential in a plasma is lowered, which lowers the
amount of energy a particle needs to become ionized. In
plasmas, which consist of excited neutral particles, ions,
and electrons, introducing a cutoff both restricts the in-
ternal partition function, as well as provides a measurable
criterion for when the electron is considered no longer
bound to the nucleus.

A few methods3–5 have introduced such a cutoff cri-
terion. With the exception of the occupation probabil-
ity formalism5, the most widely adopted models for the
truncation of the internal partition function supress all
orbital radii that exceed a pre-determined distance. In
this work we have first considered a model similar to
Bond’s3, where the radii of the hydrogen-like electron
orbitals are determined by the Bohr radius, a0 and the
principle quantum number n. Explicitly, an = a0n

2. We
then present what we believe to be a more mathemat-
ically rigorous version of this method, which uses the
radial distribution function of the electron orbitals to de-
termine the most probable value of an.

These methods have been used to calculate the ther-
modynamic properties of the nitrogen ideal gas and of the
doubly-ionized ideal argon plasma. The doubly-ionized
argon plasma was simplified significantly by assuming
hydrogen-like states. We have elaborated on the validity
of this reduction in Section II A. It is the author’s opin-
ion that a similar reduction cannot be applied to neutral
nitrogen nor its cations, N+ and N2+, due to the na-
ture of their low-lying quantum states. Therefore, sim-
ilar calculations for the doubly-ionized nitrogen plasma
have proven more challenging. Using the anaylytic form
of the radial wave function given by Hibbert et al.6 we
were able to extend our approach to netural nitrogen.

The purpose of this work was to begin to explore vari-
ous partition function truncation techniques in MAGPIE.
Future work is expected to include wave functions for

the nitrogen cations as well as implementations of more
advanced techniques such as the occupation probability
formalism.5

II. PARTITION FUNCTION TRUNCATION
METHODS

The internal partition function of a particle is given by

Z(T )elec =
∑
j

gje
−Ej/kT (1)

where gj is the degeneracy of the level and Ej is the en-
ergy that corresponds with quantum state j. In the case
of hydrogen the degeneracy is equivalent to the square of
the principle quantum number, and consequently causes
the series to diverge. More intuitively, the partition func-
tion should be dependent upon volume, but the wave-
functions of hydrogen extend ad infinitum, making it im-
possible to contain them within a finite volume. Further-
more, the wavefunctions need to be contained within the
volume occupied by a single particle so they do not over-
lap with quantum states of neighboring atoms. Thus a
cutoff for the internal partition function is needed.

Many different methods for choosing this value have
been proposed. Previous authors have used methods as
simple as terminating the series after the ground state7,
to more complex methods such as the occupation proba-
bility formalism5. We first consider a method that is only
a slight modification to the approach found in Bond’s
work.

A. Bohr Radius Method

Both methods presented in this paper rely on the
assumption that argon and its cations are hydrogen-like,
and so it is crucial that we elaborate upon the validy
of this assumption. It is well known that the energy
of a hydrogen-like atom depends on the principle
quantum number and the Rydberg energy. Explicitly,
En = −Ry/n2, where Ry = 13.605 eV. Thus, in the
absence of fine and hyperfine structure, each principle
quantum number n of an idealized hydrogen-like atom
should correspond to a unique energy level. Since fine
and hyperfine structure cannot be ignored, we expect a
hydrogen-like atom to have near identical energy levels
associated with each principle quantum number.
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Futhermore, we note that if a model considers a third
row species as hydrogenic, then its ground state princi-
ple quantum number transforms from n = 3 to n = 1.
Broadly speaking, there is a mapping between the model
n and the experimental n such that nmodel = nexp − 2.
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FIG. 1. Energy levels of neutral argon as a function of prin-
ciple quantum number. Experiment (circles8). Hydrogenic
energy level approximation (red line).

Figure 1 shows that energy level calculations for
hydrogenic neutral argon are in good agreement with
experimental data8, particularly so at larger n. Figure
1 also shows minimal variance in the energy of netural
argon per quantum number, which we expect for a
hydrogenic particle. We use this evidence to assert
our claim that argon can be treated as hydrogenic to a
reasonable degree of approximation at high temperature.

It follows from Bohr’s model that the radius of
hydrogen-like electron orbitals are determined by an =
a0n

2, where a0 is the first Bohr radius and n is the princi-
ple quantum number. To avoid overlap between quantum
states of neighboring atoms we wish to exclude electron
orbits whose radius is larger than half the average dis-
tance between particles. We assume that this distance,
rs, can be expressed using the Wigner-Seitz radius

rs = (
3M

4πZρNA
)

1
3 (2)

where M is the molar mass, Z is the number of free elec-
trons per atom, ρ is the density, and NA is Avogadro’s
number. Since we have chosen to terminate the internal
partition function by using the principle quantum num-
ber, we must rearrange the equation for the classical Bohr
radius so that n is isolated.

ncut =
√
rs/rb = (

1

a0
)

1
2 (

3M

4πZρNA
)

1
6 (3)

Principle quantum numbers are defined such that for
a quantum number n, n ∈ N∗. It follows from Eq. 3
that if the quantum number n = ncut for a given orbital,

the radius of that orbital is exactly equal to half the
average distance between particles, thus it should not be
suppressed.

As can be seen from Eq. 2 the number of quantum
states should decrease as the density, ρ increases. Figure
2 shows the dependence of the limiting quantum number
on the density for neutral argon.
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FIG. 2. Density dependence of the limiting quantum number
for neutral argon. Density ranged from ρ = 1 − 1 × 10−7 to
exhibit the decrease of available states as ρ increases.

B. Radial Wave Function Method

It is well known that the Bohr model, used in Section
A., has significant shortcomings, particularly when it is
applied to multi-electron atoms. Therefore, we modified
the previously outlined method such that it relies upon
more contemporary methods in quantum theory. This
modification is outlined below.

It is easiest to solve the Schrödinger equation for
hydrogen-like atoms in a spherically symmetric potential,
as this is one of the few realistic systems whose analytic
solution is well known. Thus, any simplification that al-
lows us to model atoms or atomic ions as hydrogen-like
is desirable. The wave functions for the hydrogen-like
atom are defined by the principle quantum number n,
the angular momentum quantum number l, and the mag-
netic quantum number m. We begin by writing the wave
function as a product of a radial function and a spherical
harmonic function.

ψnlm = Rnl(r)Y
m
l (θ, φ) (4)

Where the radial function Rnl(r) is written

Rnl =

√
( 2Z
naµ

)3
(n−l−1)!

2n[(n−1)!]3
e−Zr/naµ ( 2Zr

naµ
)l[L2l+1

n−l−1(2Zr/naµ)]

(5)
Z is the atomic number. Since we have chosen to model

netural argon as hydrogenic (Z = 1), the atomic number
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of an argon cation is taken to be Z = 1 + q+, where q+
is the cation’s charge. Additionally we have introduced
the value, aµ = me

µ a0, where me is the electron mass and

µ is the reduced mass of the nucleus-electron system.
Typically, the nucleus is much more massive than the
electrons, so µ ≈ me and it follows that aµ = a0. In order
to further simplify the problem, we have only considered
S orbitals, thus l = 0 and m = 0. Under this assumption

the spherical harmonics term, Y ml (θ, φ) reduces to
√

1
4π .

Thus, Eq. 4 becomes

ψn00 =
√

2
π
( Z
naµ

)3 1
2n[(n−1)!]2

e−Zr/naµ [L1
n−1(2Zr/naµ)] (6)

We are then left to deal with the associated Laguerre
polynomials, which are of the form

Lpq−p = (−1)p(
d

dx
)pLq(x) (7)

where Lq(x) is the qth Lagurre polynomial expressed as

Lq(x) = ex(
d

dx
)q(e−xxq) (8)

and for the normalized hydrogen-like wavefunctions,
x = 2Zr

naµ
.

The probability per unit volume of finding the elec-
tron at a point is equal to the square of the normalized
wavefunction

ρ(r) = |ψ(r)n00|2 (9)

It follows that the integral over all space of the radial
probability density is written as

∫ ∞
0

|ψ(r)n00|24πr2dr (10)

More significantly, we may write the radial distribu-
tion function as

D(r) = |ψ(r)n00|24πr2 (11)

which represents the probability that an electron will
be found in the infinitesimally small shell between r and
r + dr. The normalized radial distribution function is
then integrated in order to find the expectation value of
the radius.

〈r〉 =

∫ ∞
0

rD(r)dr (12)

If the expectation value of the radius for the given
RDF exceeds the Wigner-Seitz radius, then the asso-
ciated state is eliminated from the electronic partition
function. In this work, the radial distribution function

was numerically integrated using an adaptive quadrature
alogorithm.

Figure 3 shows the limiting quantum number as a func-
tion of the density for the two methods. At ρ = 100 both
methods for truncating the internal partition function
converge to the same solution for neutral argon. At much
smaller densities, there is a noteable difference in the
limiting quantum determined by the two methods. We
expect this difference to be reflected in the equilibrium
composition and EOS properties of the argon plasma.
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FIG. 3. Density dependence of the limiting quantum number
for neutral argon. Both methods used for the truncation of
the internal partition function are shown.

III. RESULTS

In this report we have used MAGPIE, a LANL HE-
EOS code, to determine equilibrium composition and
EOS properties for the argon plasma. EOS quantites are
also reported for nitrogen as an ideal gas. Since nitrogen
is not hydrogenic, the method described in Section II A
must be modified significantly. For the purposes of this
report we have calculated the radial functions of nitrogen
as

Pnl(r) =

k∑
j=1

CjnlNjnlr
Ijnle−ζjnlr (13)

where Njnl is the normalization factor

Njnl =
[2ζjnl]

Ijnl+1/2

[(2Ijnl)!]1/2
(14)

The analytic form of the radial wavefunction was ini-
tially given by Hibbert et al.6 along with the parameters
Cjnl,Ijnl, and ζjnl for nl= 1s, 2s, 3s, 4s, 5s, 2p, 3p, 4p,
3d, 4d, 5d, 4f, 5f, 5g. As we will elaborate upon later,
this is all that is needed for our calculation of neutral
nitrogen.



4

A. Argon Plasma

Limiting quantum numbers were calculated using the
two methods described above and then were used as cut-
off values for the internal partition functions of argon
and its first and second cations. EOS properties and
equilibrium compositions were calculated at densites of
ρ = 0.01 g/cc & ρ = 2.25 g/cc. Temperatures ranged
from T=5,000 K to T= 200,000 K in increments of 1,000
K. Our results are compared to the unbounded internal
partition function, which we have defined as the partition
function calculated using all NIST states below the first
ionization energy of a given neutral particle or cation.
At ρ = 2.25 g/cc the ground state method and the Bohr
radius method return an identical value for the limit-
ing quantum number, thus corresponding figures only in-
clude comparisions between EOS properties and compo-
sitions calculated using the radial wave function method,
the ground state method, and the unbounded internal
partition function.
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FIG. 4. Composition of the argon plasma at 2.25 g/cc.
Three methods of truncating the partition function are shown.
Ground State (solid line). Uncorrected (dash/dot). Radial
Wave Function (dashed line).

Figure 4 serves as a demonstration of the unusual be-
havior that arises from the use of the unbounded internal
partition function. Particularly, we see that in the case
of the unbounded internal partition function the amount
of Ar2+ never exceeds the amount of Ar+ present in the
equilibrium composition. Corrected methods of calculat-
ing the internal partition function predict this transition
to happen around T=60,000 K - T=100,000 K. While it is
possible that this transition occurs outside of the temper-
ature range presented in Figure 4, the temperature would
be over 70% higher than the temperatures predicted by
various cutoff methods. Even between corrected meth-
ods there is a marked difference in the temperature at

which this transition occurs. Furthermore, both Figure
4 and Figure 5 demonstrate that the specific method of
truncating the electronic partition function will have an
appreciable effect on the composition of the plasma above
around T = 20,000 K. Since the doubly ionized ideal ar-
gon plasma is particularly sensitive to the cutoff value
selected, it is the authors’ opinion that subsequent dis-
cussions of EOS properties would be incomplete without
mention of the cutoff method used.
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FIG. 5. Composition of the argon plasma at 0.01 g/cc.
Three methods of truncating the partition function are shown.
Ground State (solid line). Uncorrected (dash/dot). Radial
Wave Function (dashed line).Bohr (dotted line).

EOS quantities that are affected by the internal parti-
tion function of neutral argon and its cations are shown
in Figures 6-8.
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FIG. 6. Helmholtz free energy vs. T for the argon plasma at
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Figures 6-8 show that the EOS quantities affected by
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the internal partition functions of argon and its cations
also exhibit unusual behavior in the case of unbounded
internal partition function. Particularly, Figures 7 and
8 show a sharp change in slope in the region from T=
20,000 K - T= 40,000 K. We believe this peculiarity to
be due to the sudden thermal population of excited elec-
tronic states in argon that are inaccessible in the trun-
cated partition functions of the other techniques.
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B. Nitrogen Ideal Gas

It has already been stated that the nitrogen proves a
more difficult problem. In the same manner as Figure 1,
we have plotted enery level data for netural nitrogen as
reported by NIST8.
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FIG. 9. Energy levels of neutral nitrogen as a function of
principle quantum number. Data has been taken from the
NIST Atomic Spectra Database8.

As demonstrated by Figure 9, there is a much greater
variance in the energy of neutral nitrogen per principle
quantum number than there was for neutral argon, par-
ticuarly below n = 4. We have concluded that the vari-
ation in energy is too large to consider nitrogen as hy-
drogenic below the specified principle quantum number.
Thus, the method outlined in Section II A becomes in-
applicable.

Instead, we use the analytic form of the radial wave
function6 to calculate radial distribution function for
neutral nitrogen. Above n = 4, we consider neutral nitro-
gen as hydrogenic and thus we apply the Bohr method.

We have included the relevant EOS quantities calcu-
lated for neutral nitrogen as an ideal gas using our modi-
fied cutoff method. These results have been compared to
the ground state method, and to a innate cutoff present
in the MAGPIE code, based upon historically accepted
values.
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FIG. 10. Entropy vs. T for neutral nitrogen at ρ = 2.25 g/cc
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FIG. 11. Internal Energy vs. T for netural nitrogen at ρ =
2.25 g/cc
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Figures 10 and 11 demonstrate that entropy and internal
energy will typically be larger in value when calculated
using our modified method then when using the ground
state method. This is simply due to the fact that this
method includes more states, which become thermally

populated at high temperature, therby increasing equilib-
rium entropy and energy, as well as increasing the value
of Zelec. It follows that the internal partition function
calculated from our modified method should be smaller
in value than the uncorrected internal partition function.
Accordingly, our values should be bounded by EOS quan-
tities calculated from the uncorrected partition function
and the ground state method. Figures 10-12 confirm that
the EOS quantities calculated by our modified method lie
within these bounds.

IV. CONCLUSION

Like many authors before us, we have concluded that
a cutoff criterion must be considered when calculating
the internal partition function, particularly at high tem-
peratures. Additionally, we assert that differences in the
internal partition function have less of an effect on com-
position and EOS properties at low temperatures than
they do at high temperatures. The validity of this claim
falls out of the fact that the compositions, Helmholtz
free energies, entropies, and internal energies (Figures 4-
8) calculated from the internal partition functions used
in our comparisions converge below T = 10,000 K for
the argon plasma. While we do not see a similar cov-
ergence for the entropy of neutral nitrogen below T =
10,000 K, Figure 10 shows that the differences between
methods are within 9% below T = 10,000 K and reach a
maximum difference of 19% at T = 50,000 K. Thus, dif-
ferences in the internal partition function appear to have
a more appreciable effect as temperature increases.

A similar conclusion can be reached by examining the
magnitude of the energy levels. For low temperatures
only the first few terms make a substantial contribution
to the internal partition function. Thus, the internal par-
tition function can be described as self-limiting in this
regime. At temperatures greater than T = 20,000 K we
begin to see appreciable differences in the composition
and EOS quantities calculated using various methods for
determining the cutoff. Thus we conclude that in pre-
senting these properties one must include their method
for terminating the internal partition function.

Future work is expected to include EOS quantities of
the nitrogen plasma using methods outlined in this study.
At high densities, we expect this to include the accurate
calculation of wavefunctions for nitrogen and its ions.
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